2/EH-73 (ii) (Syllabus-2015)

2018

(April)

COMPUTER SCIENCE

(Elective/Honours)

(Digital Logic Design and Computer Architecture)

(CS-201T)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT-I

1. (a) Use either 9's complement or 10's complement to perform subtraction of the following decimal numbers:

3570 - 2100

(b) Use either 9's complement or 10's complement to perform subtraction of the following decimal numbers:

15 - 5800

(Turn Over)

3

(c)	Use either 1's complement or 2's complement to perform subtraction of the following binary numbers: 1000-1100	3		(d) (e)	What are logic gates: Explain	4 3
(d) (e)	base 2. Convert the decimal number $(5)_{10}$ to base 16.	1 1 2	3.	(a)	Simplify the following Boolean expression, given by the function $F(A, B, C, D)$, a function of four variables, viz., A , B , C and D :	
(f) (g)	Convert the binary number $(1011)_2$ to base 10. Obtain the truth table for the following Boolean function: $F = A \cdot B + A$	2		(b)	$F(A, B, C, D) = \Sigma(1, 2, 3, 5, 6, 7, 13, 14, 15)$ Use a four-variable Karnaugh map. Write the answer in the Sum-of-Products (SOP) form. Show that $(BC' + A'D)(AB' + CD') = 0$.	5 2
2. (a)	Explain the following in brief: 1×4* (i) 1's complement (ii) 2's complement (iii) 9's complement (iv) 10's complement	=4		(c) (d)	Express the following Boolean expression as a sum of minterms: $F(A, B, C) = 1$ The given function $F(A, B, C)$ uses three variables, viz., A , B and C . Simplify the following Boolean expression	2
	Use either 1's complement or 2's complement to perform subtraction of the following binary numbers:	2		, ,	F(A, B, C): $F(A, B, C) = \Sigma(1, 3, 4, 5, 7)$ $d(A, B, C) = \Sigma(0, 6)$ The given function $F(A, B, C)$ uses three variables, viz., A, B and C . The don't	
(c) 8D/1724	Explain the following in brief: 1+1 st (i) Octal number system (ii) Hexadecimal number	-2	8D	/172	care conditions $d(A, B, C)$ are also given. Use a three-variable Karnaugh map. Write the answer in the Sum-of-Products (SOP) form.	4 ver)
-11	(Continued	1)	J.	•		

(e)	Draw a logic diagram using only NAND gates to represent the following Boolean expression:	2
	$A \cdot B + C \cdot D$	
4. (a)	What is De Morgan's theorem?	2 :
(b)	Define canonical form.	1
(c)	Define don't care conditions.	1
(d)	Boolean expression :	3
(e)	$(A+B)\cdot (C+D)\cdot (E+F)$ Convert the following Boolean expression into canonical form:	3
Ø	$F(A, B, C, D) = AB'D + BCD'$ The given expression is a function $F(A, B, C, D)$; a function of four variables, viz., A, B, C and D . Use all the four variables, viz., A, B, C and D . Use all the to represent the given function $F(A, B, C, D)$. Simplify the following Boolean expressions: $F(A, B, C) = \Sigma(0, 1, 3, 4, 5, 7)$ The given function $F(A, B, C)$ uses three variables, viz., A, B and C . Use a answer in the Sum-of-Products (SOP)	
(g)	expression: following Boolean	3
BD/1724	A+A'B+A'B'	<i>y</i>

UNIT-III

Show the step-by-step multiplication **5.** (a) process using Booth's algorithm for the following positive multiplying numbers: $(+15) \times (+13)$ Assume that 5-bit registers are used. 10 Derive the Boolean expression for the (b) sum of a full-adder. Draw a truth table with A, B and C as the three inputs, and also use S as the output for the sum. 3 How is logical shift right different from (c) 2 logical shift left? Draw the flowchart of Booth's multipli-**6.** (a) cation algorithm for multiplying two binary integers in 2's complement 4+7=11 representation. Also explain.

UNIT-IV

Design a 3-bit counter. It goes through 7. the following states, expressed as 3-bit numbers, namely 000, 001, 010, 011, 100, 101, 110 and 111 in binary (i.e., 0, 1, 2, 3, ... up to 7 in decimal). Use any type of flip-flop for the design of the counter. Draw the following: 3+7=10

(i) State diagram

Explain half-adder.

- (ii) Excitation table
- Explain instruction cycle.

(Turn Over)

5

4

8D/1724

(Continued)

8. (a) What is a flip-flop? Explain. 8 What is a register? 2 Explain in brief the following addressing modes: 2+3=5Direct addressing mode (ii) Indirect addressing mode UNIT-V 9. (a) Define the following terms: 1+1+2=4 (i) Hit (lü) Miss (iii) Hit ratio Explain the following in brief: (i) RAM 2+2=4(ii) Secondary memory Explain the following procedures with reference to cache (i) Direct mapping 3+4=7

(ii) Two-way set-associative mapping

10. (a) Answer the following with respect to DMA:

- (i) What is the full form of DMA?
- (ii) Explain DMA.
- (iii) Also draw a relevant diagram.
- (b) Explain the following modes of data transfer: 3+3=6
 - (i) Programmed I/O mode of data transfer
 - (ii) Interrupt-initiated I/O mode of data transfer

(Internal Assessment = 25)
